Self-similar blow-up for a diffusion-attraction problem
Abstract
In this paper we consider a system of equations that describes a class of mass-conserving aggregation phenomena, including gravitational collapse and bacterial chemotaxis. In spatial dimensions strictly larger than two, and under the assumptions of radial symmetry, it is known that this system has at least two stable mechanisms of singularity formation (see, e.g., Brenner M P et al 1999 Nonlinearity 12 1071-98); one type is self-similar, and may be viewed as a trade-off between diffusion and attraction, while in the other type attraction prevails over diffusion and a non-self-similar shock wave results. Our main result identifies a class of initial data for which the blow-up behaviour is of the former, self-similar type. The blow-up profile is characterized as belonging to a subset of stationary solutions of the associated ordinary differential equation.
Más información
Título según SCOPUS: | Self-similar blow-up for a diffusion-attraction problem |
Título de la Revista: | NONLINEARITY |
Volumen: | 17 |
Número: | 6 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2004 |
Página de inicio: | 2137 |
Página final: | 2162 |
Idioma: | English |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-9544225046&partnerID=q2rCbXpz |
DOI: |
10.1088/0951-7715/17/6/007 |
Notas: | SCOPUS |