Nonlinear elliptic problems above criticality
Abstract
We consider the elliptic problem Δu + up = 0, u > 0 in an exterior domain, Ω = â„N \ D under zero Dirichlet and vanishing conditions, where D is smooth and bounded, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(|x|-2/p-1 at infinity. In addition, a fast decay solution exists if p is close enough to the critical exponent. If p differs from certain sequence of resonant values which tends to infinity, then the Dirichlet problem is also solvabe in a bounded domain Ω with a sufficiently small spherical hole. © Birkhäuser Verlag, Basel 2006.
Más información
Título según SCOPUS: | Nonlinear elliptic problems above criticality |
Título de la Revista: | MILAN JOURNAL OF MATHEMATICS |
Volumen: | 74 |
Número: | 1 |
Editorial: | SPRINGER BASEL AG |
Fecha de publicación: | 2006 |
Página de inicio: | 313 |
Página final: | 338 |
Idioma: | eng |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-33751528861&partnerID=q2rCbXpz |
DOI: |
10.1007/s00032-006-0058-0 |
Notas: | SCOPUS |