Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity
Abstract
Let J ∈ C(â„), J ≥ 0, ∫℠J = 1 and consider the nonlocal diffusion operator M[u] = J * u - u. We study the equation Mu + ∫(x,u) = 0, u ≥ 0, in â„, where f is a KPP-type nonlinearity, periodic in x. We show that the principal eigenvalue of the linearization around zero is well defined and that a nontrivial solution of the nonlinear problem exists if and only if this eigenvalue is negative. We prove that if, additionally, J is symmetric, then the nontrivial solution is unique. © 2008 Society for Industrial and Applied Mathematics.
Más información
Título según WOS: | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity |
Título según SCOPUS: | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity |
Título de la Revista: | SIAM JOURNAL ON MATHEMATICAL ANALYSIS |
Volumen: | 39 |
Número: | 5 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2008 |
Página de inicio: | 1693 |
Página final: | 1709 |
Idioma: | English |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-52649153528&partnerID=q2rCbXpz |
DOI: |
10.1137/060676854 |
Notas: | ISI, SCOPUS |