Inference system using softcomputing and mixed data applied in metabolic pathway datamining

Arredondo T.; Candel D.; Leiva, M; Dombrovskaia L.; Agullo, L; Seeger M.

Abstract

This paper describes the development of an inference system used for the identification of genes that encode enzymes of metabolic pathways. Input sequence alignment values are used to classify the best candidate genes for inclusion in a metabolic pathway map. The system workflow allows the user to provide feedback, which is stored in conjunction with analysed sequences for periodic retraining. The construction of the system involved the study of several different classifiers with various topologies, data sets and parameter normalisation data models. Experimental results show an excellent prediction capability with the classifiers trained with mixed data providing the best results. Copyright © 2012 Inderscience Enterprises Ltd.

Más información

Título según WOS: Inference system using softcomputing and mixed data applied in metabolic pathway datamining
Título según SCOPUS: Inference system using softcomputing and mixed data applied in metabolic pathway datamining
Título de la Revista: International Journal of Data Mining and Bioinformatics
Volumen: 6
Número: 1
Editorial: Inderscience
Fecha de publicación: 2012
Página de inicio: 61
Página final: 85
Idioma: English
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-84857733059&partnerID=40&md5=12b6b8bd41cbf3489934c874f406ce8f
DOI:

10.1504/IJDMB.2012.045539

Notas: ISI, SCOPUS