Birrepresentations in a locally nilpotent variety

Arenas, Manuel.; Labra, Alicia

Abstract

"It is known that commutative algebras satisfying the identity of degree four ((yx)x)x + γ((xx)x) = 0, with γ in the field and γ ≠ —1 are locally nilpotent. In this paper we study the birrepresentations of an algebra A that belongs to a variety ν of locally nilpotent algebras. We prove that if the split null extension of a birrepresentation of an algebra A ∈ ν by a vector space M is locally nilpotent, then it is trivial or reducible. As corollaries we get that if A is finitely generated, then every birrepresentation is trivial or reducible and that every finite-dimensional birrepresentation is equivalent to a birrepre-sentation consisting of strictly upper triangular matrices. We also prove that the multiplicative universal envelope of a finitely generated algebra in V is nilpotent, therefore it is finite-dimensional."

Más información

Título según SCIELO: Birrepresentations in a locally nilpotent variety
Título de la Revista: Proyecciones (Antofagasta) - Revista de matemática
Volumen: 33
Número: 1
Editorial: Departamento de Matemáticas, Universidad Católica del Norte
Fecha de publicación: 2014
Página de inicio: 123
Página final: 132
Idioma: en
URL: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100009&lng=en&nrm=iso&tlng=en
DOI:

10.4067/S0716-09172014000100009

Notas: SCIELO