Birrepresentations in a locally nilpotent variety
Abstract
"It is known that commutative algebras satisfying the identity of degree four ((yx)x)x + γ((xx)x) = 0, with γ in the field and γ ≠ 1 are locally nilpotent. In this paper we study the birrepresentations of an algebra A that belongs to a variety ν of locally nilpotent algebras. We prove that if the split null extension of a birrepresentation of an algebra A ∈ ν by a vector space M is locally nilpotent, then it is trivial or reducible. As corollaries we get that if A is finitely generated, then every birrepresentation is trivial or reducible and that every finite-dimensional birrepresentation is equivalent to a birrepre-sentation consisting of strictly upper triangular matrices. We also prove that the multiplicative universal envelope of a finitely generated algebra in V is nilpotent, therefore it is finite-dimensional."
Más información
Título según SCIELO: | Birrepresentations in a locally nilpotent variety |
Título de la Revista: | Proyecciones (Antofagasta) - Revista de matemática |
Volumen: | 33 |
Número: | 1 |
Editorial: | Departamento de Matemáticas, Universidad Católica del Norte |
Fecha de publicación: | 2014 |
Página de inicio: | 123 |
Página final: | 132 |
Idioma: | en |
URL: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172014000100009&lng=en&nrm=iso&tlng=en |
DOI: |
10.4067/S0716-09172014000100009 |
Notas: | SCIELO |