Upper bounding in inner regions for global optimization under inequality constraints
Abstract
In deterministic continuous constrained global optimization, upper bounding the objective function generally resorts to local minimization at several nodes/iterations of the branch and bound. We propose in this paper an alternative approach when the constraints are inequalities and the feasible space has a non-null volume. First, we extract an inner region, i.e., an entirely feasible convex polyhedron or box in which all points satisfy the constraints. Second, we select a point inside the extracted inner region and update the upper bound with its cost. We describe in this paper two original inner region extraction algorithms implemented in our interval B&B called IbexOpt (AAAI, pp 99-104, 2011). They apply to nonconvex constraints involving mathematical operators like , . This upper bounding shows very good performance obtained on medium-sized systems proposed in the COCONUT suite.
Más información
Título según WOS: | Upper bounding in inner regions for global optimization under inequality constraints |
Título según SCOPUS: | Upper bounding in inner regions for global optimization under inequality constraints |
Título de la Revista: | JOURNAL OF GLOBAL OPTIMIZATION |
Volumen: | 60 |
Número: | 2 |
Editorial: | Springer |
Fecha de publicación: | 2014 |
Página de inicio: | 145 |
Página final: | 164 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s10898-014-0145-7 |
DOI: |
10.1007/s10898-014-0145-7 |
Notas: | ISI, SCOPUS |