Upper bounding in inner regions for global optimization under inequality constraints

Araya, I.; Trombettoni G.; Neveu, B; Chabert G.

Abstract

In deterministic continuous constrained global optimization, upper bounding the objective function generally resorts to local minimization at several nodes/iterations of the branch and bound. We propose in this paper an alternative approach when the constraints are inequalities and the feasible space has a non-null volume. First, we extract an inner region, i.e., an entirely feasible convex polyhedron or box in which all points satisfy the constraints. Second, we select a point inside the extracted inner region and update the upper bound with its cost. We describe in this paper two original inner region extraction algorithms implemented in our interval B&B called IbexOpt (AAAI, pp 99-104, 2011). They apply to nonconvex constraints involving mathematical operators like , . This upper bounding shows very good performance obtained on medium-sized systems proposed in the COCONUT suite.

Más información

Título según WOS: Upper bounding in inner regions for global optimization under inequality constraints
Título según SCOPUS: Upper bounding in inner regions for global optimization under inequality constraints
Título de la Revista: JOURNAL OF GLOBAL OPTIMIZATION
Volumen: 60
Número: 2
Editorial: Springer
Fecha de publicación: 2014
Página de inicio: 145
Página final: 164
Idioma: English
URL: http://link.springer.com/10.1007/s10898-014-0145-7
DOI:

10.1007/s10898-014-0145-7

Notas: ISI, SCOPUS