Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type
Abstract
Recently it was shown that standard odd- and even-dimensional general relativity can be obtained from a -dimensional Chern-Simons Lagrangian invariant under the algebra and from a -dimensional Born-Infeld Lagrangian invariant under a subalgebra , respectively. Very recently, it was shown that the generalized Inonu-Wigner contraction of the generalized AdS-Maxwell algebras provides Maxwell algebras of types which correspond to the so-called Lie algebras. In this article we report on a simple model that suggests a mechanism by which standard odd-dimensional general relativity may emerge as the weak coupling constant limit of a -dimensional Chern-Simons Lagrangian invariant under the Maxwell algebra type , if and only if . Similarly, we show that standard even-dimensional general relativity emerges as the weak coupling constant limit of a -dimensional Born-Infeld type Lagrangian invariant under a subalgebra of the Maxwell algebra type, if and only if . It is shown that when this is not possible for a -dimensional Chern-Simons Lagrangian invariant under the and for a -dimensional Born-Infeld type Lagrangian invariant under the algebra.
Más información
Título según WOS: | Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type |
Título según SCOPUS: | Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type |
Título de la Revista: | EUROPEAN PHYSICAL JOURNAL C |
Volumen: | 74 |
Número: | 2 |
Editorial: | Springer |
Fecha de publicación: | 2014 |
Página de inicio: | 1 |
Página final: | 16 |
Idioma: | English |
URL: | http://link.springer.com/10.1140/epjc/s10052-014-2741-6 |
DOI: |
10.1140/epjc/s10052-014-2741-6 |
Notas: | ISI, SCOPUS |