ON THE CONNECTIVITY OF THE BRANCH LOCUS OF THE SCHOTTKY SPACE
Abstract
Let M be a handlebody of genus g >= 2. The space T(M), that parametrizes marked Kleinian structures on M up to isomorphisms, can be identified with the space MSg, of marked Schottky groups of rank g, so it carries a structure of complex manifold of finite dimension 3(g - 1). The space M(M) parametrizing Kleinian structures on M up to isomorphisms, can be identified with S-g, the Schottky space of rank g, and it carries the structure of a complex orbifold. In these identifications, the projection map pi: T(M) -> M(M) corresponds to the map from MSg, onto S-g that forgets the marking. In this paper we observe that the singular locus B(M) of M(M), that is, the branch locus of pi, has (i) exactly two connected components for g = 2, (ii) at most two connected components for g >= 4 even, and (iii) M(M) is connected for g >= 3 odd.
Más información
Título según WOS: | ON THE CONNECTIVITY OF THE BRANCH LOCUS OF THE SCHOTTKY SPACE |
Título según SCOPUS: | On the connectivity of the branch locus of the schottky space |
Título de la Revista: | ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA |
Volumen: | 39 |
Número: | 2 |
Editorial: | SUOMALAINEN TIEDEAKATEMIA |
Fecha de publicación: | 2014 |
Página de inicio: | 635 |
Página final: | 654 |
Idioma: | English |
URL: | http://www.acadsci.fi/mathematica/Vol39/vol39pp635-654.pdf |
DOI: |
10.5186/aasfm.2014.3942 |
Notas: | ISI, SCOPUS |