Falsifying Field-based Dark Energy Models.

León G.; Leyva Y.; Saridakis, E. N.; Martin, O; Cárdenas, R.; Lefebvre, Karl; Garcia, Raoul

Abstract

We survey the application of specific tools to distinguish amongst the wide vari- ety of dark energy models that are nowadays under investigation. The first class of tools is more mathematical in character: the application of the theory of dynamical systems to select the better behaved models, with appropriate attractors in the past and future. The second class of tools is rather physical: the use of astrophysical observations to crack the degeneracy of classes of dark energy models. In this last case the observations related with structure formation are emphasized both in the linear and non-linear regimes. We exemplify several studies based on our research, such as quintom and quinstant dark energy ones. Quintom dark energy paradigm is a hybrid construction of quintessence and phantom fields, which does not suffer from fine-tuning problems associated to phantom field and additionally it preserves the scaling behavior of quintessence. Quintom dark energy is motivated on theoretical grounds as an explanation for the crossing of the phantom divide, i.e. the smooth crossing of the dark energy state equation parameter below the value -1. On the other hand, quinstant dark energy is considered to be formed by quintessence and a negative cosmological constant, the inclusion of this later component allows for a viable mechanism to halt acceleration. We comment that the quinstant dark energy scenario gives good predictions for structure formation in the linear regime, but fails to do that in the non-linear one, for redshifts larger than one. We comment that there might still be some degree of arbitrariness in the selection of the best dark energy models.

Más información

Título de la Revista: ASTROPHYSICS AND SPACE SCIENCE
Editorial: Springer
Idioma: English
URL: https://www.novapublishers.com/catalog/product_info.php?products_id=12822