Lipschitz modulus in convex semi-infinite optimization via d.c. functions
Keywords: convex semi-infinite programming, modulus of metric regularity, d.c. functions
Abstract
We are concerned with the Lipschitz modulus of the optimal set mapping associated with canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a lower and an upper bound for this modulus, both of them given exclusively in terms of the problem’s data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably simplified expression. Our approach is based on variational techniques applied to certain difference of convex functions related to the model. Some results of [M.J. C´anovas et al., J. Optim. Theory Appl. (2008) Online First] (which go back to [M.J. C´anovas, J. Global Optim. 41 (2008) 1–13] and [Ioffe, Math. Surveys 55 (2000) 501–558; Control Cybern. 32 (2003) 543–554]) constitute the starting point of the present work.
Más información
Título de la Revista: | ESAIM: Control, Optimisation and Calculus of Variations |
Volumen: | 15 |
Número: | 4 |
Editorial: | EDP SCIENCES S A |
Fecha de publicación: | 2009 |
Página de inicio: | 763 |
Página final: | 781 |
Idioma: | English |
Financiamiento/Sponsor: | This research has been partially supported by grants MTM2005-08572-C03 (01-02), MTM2006-27491-E from MEC (Spain) and FEDER (E.U.), and ACOMP/2007/247-292, from Generalitat Valenciana (Spain). |
URL: | http://www.esaim-cocv.org/10.1051/cocv:2008052 |
DOI: |
10.1051/cocv:2008052 |
Notas: | ISI |