Sharp regularity for certain nilpotent group actions on the interval

Castro, Gonzalo; Jorquera Eduardo; Navas, Andres

Abstract

According to the classical Plante-Thurston Theorem, all nilpotent groups of C-2-diffeomorphisms of the closed interval are Abelian. Using techniques coming from the works of Denjoy and Pixton, Farb and Franks constructed a faithful action by C-1-diffeomorphisms of [0, 1] for every finitely-generated, torsion-free, non-Abelian nilpotent group. In this work, we give a version of this construction that is sharp in what concerns the Holder regularity of the derivatives. Half of the proof relies on results on random paths on Heisenberg-like groups that are interesting by themselves.

Más información

Título según WOS: Sharp regularity for certain nilpotent group actions on the interval
Título según SCOPUS: Sharp regularity for certain nilpotent group actions on the interval
Título de la Revista: MATHEMATISCHE ANNALEN
Volumen: 359
Número: 1-2
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2014
Página de inicio: 101
Página final: 152
Idioma: English
DOI:

10.1007/s00208-013-0995-1

Notas: ISI, SCOPUS - http://download.springer.com/static/pdf/381/art%253A10.1007%252Fs00208-013-0995-1.pdf?auth66=1412539930_0cc3590fd2146d38e0424d69b2d0f31c&ext=.pdf