Uniform stability of (a, k)-regularized families
Abstract
In this article we study the uniform stability of an (a, k)-regularized family {S(t)}(t >= 0) generated by a closed operator A. We give sufficient conditions, on the scalar kernels a, k and the operator A, to ensure the uniform stability of the family {S(t)}(t >= 0) in Hilbert spaces. Our main result is a generalization of Theorem 1 in [Proc. Amer. Math. Soc. 132(1) (2004), 175-181], concerning the stability of resolvent families, and can be seen as a substantial generalization of the Gearhart-Greiner-Pruss characterization of exponential stability for strongly continuous semigroups.
Más información
Título según WOS: | Uniform stability of (a, k)-regularized families |
Título según SCOPUS: | Uniform stability of (a,k)-regularized families |
Título de la Revista: | ASYMPTOTIC ANALYSIS |
Volumen: | 84 |
Número: | 01-feb |
Editorial: | IOS Press |
Fecha de publicación: | 2013 |
Página de inicio: | 47 |
Página final: | 60 |
Idioma: | English |
DOI: |
10.3233/ASY-131169 |
Notas: | ISI, SCOPUS |