Uniform stability of (a, k)-regularized families

Lizama C.; Miana, PJ; Poblete F.

Abstract

In this article we study the uniform stability of an (a, k)-regularized family {S(t)}(t >= 0) generated by a closed operator A. We give sufficient conditions, on the scalar kernels a, k and the operator A, to ensure the uniform stability of the family {S(t)}(t >= 0) in Hilbert spaces. Our main result is a generalization of Theorem 1 in [Proc. Amer. Math. Soc. 132(1) (2004), 175-181], concerning the stability of resolvent families, and can be seen as a substantial generalization of the Gearhart-Greiner-Pruss characterization of exponential stability for strongly continuous semigroups.

Más información

Título según WOS: Uniform stability of (a, k)-regularized families
Título según SCOPUS: Uniform stability of (a,k)-regularized families
Título de la Revista: ASYMPTOTIC ANALYSIS
Volumen: 84
Número: 01-feb
Editorial: IOS Press
Fecha de publicación: 2013
Página de inicio: 47
Página final: 60
Idioma: English
DOI:

10.3233/ASY-131169

Notas: ISI, SCOPUS