Uniform stability of (a, k)-regularized families
Abstract
In this article we study the uniform stability of an (a, k)-regularized family {S(t)}(t >= 0) generated by a closed operator A. We give sufficient conditions, on the scalar kernels a, k and the operator A, to ensure the uniform stability of the family {S(t)}(t >= 0) in Hilbert spaces. Our main result is a generalization of Theorem 1 in [Proc. Amer. Math. Soc. 132(1) (2004), 175-181], concerning the stability of resolvent families, and can be seen as a substantial generalization of the Gearhart-Greiner-Pruss characterization of exponential stability for strongly continuous semigroups.
Más información
| Título según WOS: | Uniform stability of (a, k)-regularized families |
| Título según SCOPUS: | Uniform stability of (a,k)-regularized families |
| Título de la Revista: | ASYMPTOTIC ANALYSIS |
| Volumen: | 84 |
| Número: | 01-feb |
| Editorial: | SAGE PUBLICATIONS INC |
| Fecha de publicación: | 2013 |
| Página de inicio: | 47 |
| Página final: | 60 |
| Idioma: | English |
| DOI: |
10.3233/ASY-131169 |
| Notas: | ISI, SCOPUS |