Vanishing viscosity for non-homogeneous asymmetric fluids in R-3: The L-2 case
Abstract
We study the vanishing viscosity problem for the local-in-time solutions to the equations of non-homogeneous, viscous, incompressible asymmetric fluid in R-3 in the L-2 context. We prove that the fluid variables converge uniformly as the viscosities go to zero to a solution of a non-homogeneous, non-viscous, incompressible asymmetric fluid governed by an Euler-like system. This completes the previous work [5] where results for L-P, p > 3, where obtained. (C) 2014 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Vanishing viscosity for non-homogeneous asymmetric fluids in R-3: The L-2 case |
| Título según SCOPUS: | Vanishing viscosity for non-homogeneous asymmetric fluids in R3: The L2 case |
| Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
| Volumen: | 420 |
| Número: | 1 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2014 |
| Página de inicio: | 207 |
| Página final: | 221 |
| Idioma: | English |
| DOI: |
10.1016/j.jmaa.2014.05.060 |
| Notas: | ISI, SCOPUS |