On the existence of non-monotone non-oscillating wavefronts
Abstract
We present a monostable delayed reaction diffusion equation with the unimodal birth function which admits only non-monotone wavefronts. Moreover, these fronts are either eventually monotone (in particular, such is the minimal wave) or slowly oscillating. Hence, for the Mackey-Glass type diffusive equations, we answer affirmatively the question about the existence of non-monotone non-oscillating wavefronts. As it was recently established by Hasik et al. and Ducrot et al., the same question has a negative answer for the KPP-Fisher equation with a single delay. (C) 2014 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | On the existence of non-monotone non-oscillating wavefronts |
Título según SCOPUS: | On the existence of non-monotone non-oscillating wavefronts |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 419 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2014 |
Página de inicio: | 606 |
Página final: | 616 |
Idioma: | English |
DOI: |
10.1016/j.jmaa.2014.04.075 |
Notas: | ISI, SCOPUS |