On the existence of non-monotone non-oscillating wavefronts

Ivanov, A; Gómez C; Trofimchuk, S

Abstract

We present a monostable delayed reaction diffusion equation with the unimodal birth function which admits only non-monotone wavefronts. Moreover, these fronts are either eventually monotone (in particular, such is the minimal wave) or slowly oscillating. Hence, for the Mackey-Glass type diffusive equations, we answer affirmatively the question about the existence of non-monotone non-oscillating wavefronts. As it was recently established by Hasik et al. and Ducrot et al., the same question has a negative answer for the KPP-Fisher equation with a single delay. (C) 2014 Elsevier Inc. All rights reserved.

Más información

Título según WOS: On the existence of non-monotone non-oscillating wavefronts
Título según SCOPUS: On the existence of non-monotone non-oscillating wavefronts
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 419
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2014
Página de inicio: 606
Página final: 616
Idioma: English
DOI:

10.1016/j.jmaa.2014.04.075

Notas: ISI, SCOPUS