Grape maturity estimation based on seed images and neural networks
Abstract
The grape phenolic maturity is one of the most important parameters to determine the optimal time for harvest. In this paper we propose an innovative methodology for the problem of how this task is performed today. In particular, the method consists in analyzing seed images using pattern recognition methodology, and classifying them in immature, mature and over mature states through a supervised learning neural network. The methodology presented gives objective information about maturity, which is useful for deciding the moment when the harvest should be performed. (C) 2014 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Grape maturity estimation based on seed images and neural networks |
Título según SCOPUS: | Grape maturity estimation based on seed images and neural networks |
Título de la Revista: | ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE |
Volumen: | 35 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2014 |
Página de inicio: | 95 |
Página final: | 104 |
Idioma: | English |
DOI: |
10.1016/j.engappai.2014.06.007 |
Notas: | ISI, SCOPUS |