Mesoscopic capacitor and zero-point energy: Poisson's distribution for virtual charges, pressure, and decoherence control
Abstract
Mesoscopic capacitor theory, which includes intrinsic inductive effects from quantum tunneling, is applied to conducting spherical shells. The zero-point pressure and the number of virtual charged pairs are determined assuming a Poisson distribution. They are completely defined by a dimensionless mesoscopic parameter (chi(c)) measuring the average number of virtual pairs per solid angle and carrying mesoscopic information. Fluctuations remain finite and well defined. Connections with usual quantum-fieldtheory limit enables us to evaluate chi(c) similar to 1.007110. Equivalently, for a mesoscopic parallelplate capacitor, the shot noise distribution becomes operative with chi(c) similar to 0.94705 as well being related to the density of virtual pairs. Temperature decoherence and capacitor control are discussed by considering typical values of quantum dot devices and Coulomb blockade theory.
Más información
Título según WOS: | Mesoscopic capacitor and zero-point energy: Poisson's distribution for virtual charges, pressure, and decoherence control |
Título según SCOPUS: | Mesoscopic capacitor and zero-point energy: Poisson's distribution for virtual charges, pressure, and decoherence control |
Título de la Revista: | MODERN PHYSICS LETTERS B |
Volumen: | 28 |
Número: | 22 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2014 |
Idioma: | English |
DOI: |
10.1142/S0217984914501814 |
Notas: | ISI, SCOPUS |