Sensitivity to evidence in Gaussian Bayesian networks using mutual information

Gomez-Villegas, MA; Main, P; Viviani, P

Abstract

We introduce a methodology for sensitivity analysis of evidence variables in Gaussian Bayesian networks. Knowledge of the posterior probability distribution of the target variable in a Bayesian network, given a set of evidence, is desirable. However, this evidence is not always determined; in fact, additional information might be requested to improve the solution in terms of reducing uncertainty. In this study we develop a procedure, based on Shannon entropy and information theory measures, that allows us to prioritize information according to its utility in yielding a better result. Some examples illustrate the concepts and methods introduced. (C) 2014 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Sensitivity to evidence in Gaussian Bayesian networks using mutual information
Título según SCOPUS: Sensitivity to evidence in Gaussian Bayesian networks using mutual information
Título de la Revista: INFORMATION SCIENCES
Volumen: 275
Editorial: Elsevier Science Inc.
Fecha de publicación: 2014
Página de inicio: 115
Página final: 126
Idioma: English
DOI:

10.1016/j.ins.2014.02.025

Notas: ISI, SCOPUS