MULTIPLE-LAYER SOLUTIONS TO THE ALLEN-CAHN EQUATION ON HYPERBOLIC SPACE
Abstract
In this paper we study the existence of multiple-layer solutions to the elliptic Allen-Cahn equation in hyperbolic space: -Delta(n)(H) u + F'(u) = 0; here F is a nonnegative double-well potential with nondegenerate minima. We prove that for any collection of widely separated, nonintersecting hyperplanes in H-n, there is a solution to this equation which has a nodal set very close to this collection of hyperplanes. Unlike the corresponding problem in R-n, there are no constraints beyond the separation parameter.
Más información
| Título según WOS: | MULTIPLE-LAYER SOLUTIONS TO THE ALLEN-CAHN EQUATION ON HYPERBOLIC SPACE |
| Título de la Revista: | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
| Volumen: | 142 |
| Número: | 8 |
| Editorial: | AMER MATHEMATICAL SOC |
| Fecha de publicación: | 2014 |
| Página de inicio: | 2859 |
| Página final: | 2869 |
| Idioma: | English |
| Notas: | ISI |