ON THE MINIMAL SPEED OF FRONT PROPAGATION IN A MODEL OF THE BELOUSOV-ZHABOTINSKY REACTION

Trofimchuk E.; Pinto, M; Trofimchuk, S

Abstract

In this paper, we answer the question about the existence of the minimal speed of front propagation in a delayed version of the Murray model of the Belousov-Zhabotinsky (BZ) chemical reaction. It is assumed that the key parameter r of this model satisfies 0 < r <= 1 that makes it formally monostable. By proving that the set of all admissible speeds of propagation has the form [c(*), +infinity), we show here that the BZ system with r is an element of (0, 1] is actually of the monostable type (in general, c(*) is not linearly determined). We also establish the monotonicity of wavefronts and present the principal terms of their asymptotic expansions at infinity (in the critical case r = 1 inclusive).

Más información

Título según WOS: ON THE MINIMAL SPEED OF FRONT PROPAGATION IN A MODEL OF THE BELOUSOV-ZHABOTINSKY REACTION
Título según SCOPUS: On the minimal speed of front propagation in a model of the belousov-zhabotinsky reaction
Título de la Revista: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B
Volumen: 19
Número: 6
Editorial: AMER INST MATHEMATICAL SCIENCES-AIMS
Fecha de publicación: 2014
Página de inicio: 1769
Página final: 1781
Idioma: English
DOI:

10.3934/dcdsb.2014.19.1769

Notas: ISI, SCOPUS