A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem

Dávila J.; Dupaigne L; Wang, KL; Wei, JLC

Abstract

We consider Liouville-type and partial regularity results for the nonlinear fourth-order problem Delta(2)u = vertical bar u vertical bar(p-1)u in R-n, where p > 1 and n >= 1. We give a complete classification of stable and finite Morse index solutions (whether positive or sign changing), in the full exponent range. We also compute an upper bound of the Hausdorff dimension of the singular set of extremal solutions. Our approach is motivated by Fleming's tangent cone analysis technique for minimal surfaces and Federer's dimension reduction principle in partial regularity theory. A key tool is the monotonicity formula for biharmonic equations. (C) 2014 Elsevier Inc. All rights reserved.

Más información

Título según WOS: A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem
Título según SCOPUS: A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem
Título de la Revista: ADVANCES IN MATHEMATICS
Volumen: 258
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2014
Página de inicio: 240
Página final: 285
Idioma: English
DOI:

10.1016/j.aim.2014.02.034

Notas: ISI, SCOPUS