Symbolic Extensions Applied to Multiscale Structure of Genomes

Downarowicz T; Travisany, D; Montecino, M.; Maass A.

Abstract

A genome of a living organism consists of a long string of symbols over a finite alphabet carrying critical information for the organism. This includes its ability to control post natal growth, homeostasis, adaptation to changes in the surrounding environment, or to biochemically respond at the cellular level to various specific regulatory signals. In this sense, a genome represents a symbolic encoding of a highly organized system of information whose functioning may be revealed as a natural multilayer structure in terms of complexity and prominence. In this paper we use the mathematical theory of symbolic extensions as a framework to shed light onto how this multilayer organization is reflected in the symbolic coding of the genome. The distribution of data in an element of a standard symbolic extension of a dynamical system has a specific form: the symbolic sequence is divided into several subsequences (which we call layers) encoding the dynamics on various scales. We propose that a similar structure resides within the genomes, building our analogy on some of the most recent findings in the field of regulation of genomic DNA functioning.

Más información

Título según WOS: Symbolic Extensions Applied to Multiscale Structure of Genomes
Título según SCOPUS: Symbolic Extensions Applied to Multiscale Structure of Genomes
Título de la Revista: ACTA BIOTHEORETICA
Volumen: 62
Número: 2
Editorial: Springer
Fecha de publicación: 2014
Página de inicio: 145
Página final: 169
Idioma: English
DOI:

10.1007/s10441-014-9215-y

Notas: ISI, SCOPUS