Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms

Topp, E

Abstract

In this paper we are interested on the well-posedness of Dirichlet problems associated to integro-differential elliptic operators of order alpha < 1 in a bounded smooth domain Omega. The main difficulty arises because of losses of the boundary condition for sub and supersolutions due to the lower diffusive effect of the elliptic operator compared with the drift term. We consider the notion of viscosity solution with generalized boundary conditions, concluding strong comparison principles in <(Omega)over bar> under rather general assumptions over the drift term. As a consequence, existence and uniqueness of solutions in C((Omega) over bar) is obtained via Perron's method.

Más información

Título según WOS: Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms
Título según SCOPUS: Existence and Uniqueness for Integro-Differential Equations with Dominating Drift Terms
Título de la Revista: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
Volumen: 39
Número: 8
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2014
Página de inicio: 1523
Página final: 1554
Idioma: English
DOI:

10.1080/03605302.2014.900567

Notas: ISI, SCOPUS