Upper Bounds for Randic Spread
Abstract
The Rancho spread of a simple undirected graph G, spr(R)(G), is equal to the maximal difference between two eigenvalues of the Rancho matrix, disregarding the spectral radius [Comes et al., MATCH Commun. Math. Comput. Chem. 72 (2014) 249-266]. Using a rank-one perturbation on the Randic matrix of G it is obtained a new matrix whose matricial spread coincide with spr(R)(G). By means of this result, upper bounds for spr(R)(G) are obtained.
Más información
Título según WOS: | Upper Bounds for Randic Spread |
Título de la Revista: | MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY |
Volumen: | 72 |
Número: | 1 |
Editorial: | UNIV KRAGUJEVAC, FAC SCIENCE |
Fecha de publicación: | 2014 |
Página de inicio: | 267 |
Página final: | 278 |
Idioma: | English |
Notas: | ISI |