HYBRID NEURAL NETWORK-PARTICLE SWARM ALGORITHM TO DESCRIBE CHAOTIC TIME SERIES

Lazzús J.A.; Salfate, I; Montecinos, S

Keywords: Artificial neural network; Chaotic time series; Mackey, Glass series; Particle swarm optimization; Time series prediction

Abstract

An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. This hybrid ANN+PSO algorithm was applied on Mackey-Glass series in the short-term prediction x(t+6) and the long-term prediction x(t + 84), from the current value x(t) and the past values: x(t - 6), x(t - 12), x(t - 18). Four cases were studied, alternating the time-delay parameter as 17 or 30. Also, the first four largest Lyapunov exponents were obtained for different time-delay. Simulation shows that this ANN+PSO method is a very powerful tool for making prediction of chaotic time series.

Más información

Título según WOS: HYBRID NEURAL NETWORK-PARTICLE SWARM ALGORITHM TO DESCRIBE CHAOTIC TIME SERIES
Título según SCOPUS: Hybrid neural network-particle swarm algorithm to describe chaotic time series
Título de la Revista: Neural Network World
Volumen: 24
Número: 6
Editorial: Springer-Verlag
Fecha de publicación: 2014
Página de inicio: 601
Página final: 617
Idioma: English
Notas: ISI, SCOPUS