Pattern formation for a reaction diffusion system with constant and cross diffusion
Abstract
In this work, we study a finite volume scheme for a reaction diffusion system with constant and cross diffusionmodeling the spread of an epidemic disease within a host population structured with three subclasses of individuals (SIR-model). The mobility in each class is assumed to be influenced by the gradient of other classes. We establish the existence of a solution to the finite volume scheme and show convergence to a weak solution. The convergence proof is based on deriving a series of a priori estimates and using a general Lp compactness criterion.
Más información
Título según SCOPUS: | Pattern formation for a reaction diffusion system with constant and cross diffusion |
Título de la Revista: | Lecture Notes in Computational Science and Engineering |
Volumen: | 103 |
Editorial: | Springer Verlag |
Fecha de publicación: | 2015 |
Página de inicio: | 153 |
Página final: | 161 |
Idioma: | English |
DOI: |
10.1007/978-3-319-10705-9_15 |
Notas: | SCOPUS |