Layer solutions for the fractional Laplacian on hyperbolic space: existence, uniqueness and qualitative properties
Keywords: symmetry, hyperbolic space, fractional laplacian, Layer solution
Abstract
We investigate the equation (-Delta(Hn))(gamma) w = f(w) in H-n, where (-Delta(Hn))(gamma) corresponds to the fractional Laplacian on hyperbolic space for gamma is an element of(0, 1) and f is a smooth nonlinearity that typically comes from a double well potential. We prove the existence of heteroclinic connections in the following sense; a so-called layer solution is a smooth solution of the previous equation converging to +/- 1 at any point of the two hemispheres S-+/- subset of partial derivative H-infinity(n) and which is strictly increasing with respect to the signed distance to a totally geodesic hyperplane Pi. We prove that under additional conditions on the nonlinearity uniqueness holds up to isometry. Then we provide several symmetry results and qualitative properties of the layer solutions. Finally, we consider the multilayer case, at least when gamma is close to one.
Más información
Título según WOS: | Layer solutions for the fractional Laplacian on hyperbolic space: existence, uniqueness and qualitative properties |
Título según SCOPUS: | Layer solutions for the fractional Laplacian on hyperbolic space: existence, uniqueness and qualitative properties |
Título de la Revista: | ANNALI DI MATEMATICA PURA ED APPLICATA |
Volumen: | 193 |
Número: | 6 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2014 |
Página de inicio: | 1823 |
Página final: | 1850 |
Idioma: | English |
DOI: |
10.1007/s10231-013-0358-2 |
Notas: | ISI, SCOPUS |