Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents
Keywords: critical sobolev exponent, blowing-up solutions, nondegenerate minimal submanifolds
Abstract
Let Omega be a bounded domain in R-n with smooth boundary partial derivative Omega. We consider the equation d(2)Delta u - u + u(n-k+2/n-k-2) = 0 in Omega, under zero Neumann boundary conditions, where d is a small positive parameter. We assume that there is a k-dimensional closed, embedded minimal submanifold K of partial derivative Omega which is nondegenerate, and a certain weighted average of sectional curvatures of partial derivative Omega is positive along K. Then we prove the existence of a sequence d = d(j) -> 0 and a positive solution u(d) such that d(2)vertical bar del ud vertical bar(2) -> S delta(K) as d -> 0 in the sense of measures, where SK stands for the Dirac measure supported on K and S is a positive constant.
Más información
| Título según WOS: | Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents |
| Título según SCOPUS: | Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents |
| Título de la Revista: | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY |
| Volumen: | 16 |
| Número: | 8 |
| Editorial: | EUROPEAN MATHEMATICAL SOC-EMS |
| Fecha de publicación: | 2014 |
| Página de inicio: | 1687 |
| Página final: | 1748 |
| Idioma: | English |
| DOI: |
10.4171/JEMS/473 |
| Notas: | ISI, SCOPUS |