Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents
Keywords: critical sobolev exponent, blowing-up solutions, nondegenerate minimal submanifolds
Abstract
Let Omega be a bounded domain in R-n with smooth boundary partial derivative Omega. We consider the equation d(2)Delta u - u + u(n-k+2/n-k-2) = 0 in Omega, under zero Neumann boundary conditions, where d is a small positive parameter. We assume that there is a k-dimensional closed, embedded minimal submanifold K of partial derivative Omega which is nondegenerate, and a certain weighted average of sectional curvatures of partial derivative Omega is positive along K. Then we prove the existence of a sequence d = d(j) -> 0 and a positive solution u(d) such that d(2)vertical bar del ud vertical bar(2) -> S delta(K) as d -> 0 in the sense of measures, where SK stands for the Dirac measure supported on K and S is a positive constant.
Más información
Título según WOS: | Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents |
Título según SCOPUS: | Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents |
Título de la Revista: | JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY |
Volumen: | 16 |
Número: | 8 |
Editorial: | EUROPEAN MATHEMATICAL SOC-EMS |
Fecha de publicación: | 2014 |
Página de inicio: | 1687 |
Página final: | 1748 |
Idioma: | English |
DOI: |
10.4171/JEMS/473 |
Notas: | ISI, SCOPUS |