Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents

Del Pino M.; Mahmoudi, F; Musso, M

Keywords: critical sobolev exponent, blowing-up solutions, nondegenerate minimal submanifolds

Abstract

Let Omega be a bounded domain in R-n with smooth boundary partial derivative Omega. We consider the equation d(2)Delta u - u + u(n-k+2/n-k-2) = 0 in Omega, under zero Neumann boundary conditions, where d is a small positive parameter. We assume that there is a k-dimensional closed, embedded minimal submanifold K of partial derivative Omega which is nondegenerate, and a certain weighted average of sectional curvatures of partial derivative Omega is positive along K. Then we prove the existence of a sequence d = d(j) -> 0 and a positive solution u(d) such that d(2)vertical bar del ud vertical bar(2) -> S delta(K) as d -> 0 in the sense of measures, where SK stands for the Dirac measure supported on K and S is a positive constant.

Más información

Título según WOS: Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents
Título según SCOPUS: Bubbling on boundary submanifolds for the Lin-Ni-Takagi problem at higher critical exponents
Título de la Revista: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY
Volumen: 16
Número: 8
Editorial: EUROPEAN MATHEMATICAL SOC-EMS
Fecha de publicación: 2014
Página de inicio: 1687
Página final: 1748
Idioma: English
DOI:

10.4171/JEMS/473

Notas: ISI, SCOPUS