Entanglement Entropy in 2D non-abelian pure gauge theory
Abstract
We compute the Entanglement Entropy (EE) of a bipartition in 2D pure non-abelian U(N) gauge theory. We obtain a general expression for EE on an arbitrary Riemann surface. We find that due to area-preserving diffeomorphism symmetry EE does not depend on the size of the subsystem, but only on the number of disjoint intervals defining the bipartition. In the strong coupling limit on a torus we find that the scaling of the EE at small temperature is given by S(T)-S(0)=O(mgapTe-mgapT), which is similar to the scaling for the matter fields recently derived in literature. In the large N limit we compute all of the Renyi entropies and identify the Douglas-Kazakov phase transition. © 2014 The Authors.
Más información
Título según SCOPUS: | Entanglement Entropy in 2D non-abelian pure gauge theory |
Título de la Revista: | PHYSICS LETTERS B |
Volumen: | 737 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2014 |
Página de inicio: | 60 |
Página final: | 64 |
Idioma: | English |
DOI: |
10.1016/j.physletb.2014.08.023 |
Notas: | SCOPUS |