Limit cycles bifurcating from isochronous surfaces of revolution in R-3

Llibre J.; Rebollo-Perdomo S.; Torregrosa, J

Keywords: averaging method, limit cycle, isochronous set, periodic orbit

Abstract

In this paper we study the number of limit cycles bifurcating from isochronous surfaces of revolution contained in R-3, when we consider polynomial perturbations of arbitrary degree. The method for studying these limit cycles is based on the averaging theory and on the properties of Chebyshev systems. We present a new result on averaging theory and generalizations of some classical Chebyshev systems which allow us to obtain the main results. (C) 2011 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Limit cycles bifurcating from isochronous surfaces of revolution in R-3
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 381
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2011
Página de inicio: 414
Página final: 426
Idioma: English
DOI:

10.1016/j.jmaa.2011.04.009

Notas: ISI