Limit cycles bifurcating from isochronous surfaces of revolution in R-3
Keywords: averaging method, limit cycle, isochronous set, periodic orbit
Abstract
In this paper we study the number of limit cycles bifurcating from isochronous surfaces of revolution contained in R-3, when we consider polynomial perturbations of arbitrary degree. The method for studying these limit cycles is based on the averaging theory and on the properties of Chebyshev systems. We present a new result on averaging theory and generalizations of some classical Chebyshev systems which allow us to obtain the main results. (C) 2011 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Limit cycles bifurcating from isochronous surfaces of revolution in R-3 |
| Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
| Volumen: | 381 |
| Número: | 1 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2011 |
| Página de inicio: | 414 |
| Página final: | 426 |
| Idioma: | English |
| DOI: |
10.1016/j.jmaa.2011.04.009 |
| Notas: | ISI |