The Maximum Box Problem for moving points in the plane

Bereg S.; Diaz-Banez, JM; Pérez-Lantero P.; Ventura, I

Keywords: pattern recognition, Maximum Box Problem, Kinetic data structure

Abstract

Given a set R of r red points and a set B of b blue points in the plane, the static version of the Maximum Box Problem is to find an isothetic box H such that Ha (c) R=a... and the cardinality of Ha (c) B is maximized. In this paper, we consider a kinetic version of the problem where the points in Ra(a)B move along bounded degree algebraic trajectories. We design a compact and local quadratic-space kinetic data structure (KDS) for maintaining the optimal solution in O(rlog r+rlog b+b) time per each event. We also give an algorithm for solving the more general static problem where the maximum box can be arbitrarily oriented. This is an open problem in Aronov and Har-Peled (SIAM J. Comput. 38:899-921, 2008). We show that our approach can be used to solve this problem in O((r+b)(2)(rlog r+rlog b+b)) time. Finally we propose an efficient data structure to maintain an approximated solution of the kinetic Maximum Box Problem.

Más información

Título según WOS: The Maximum Box Problem for moving points in the plane
Título de la Revista: JOURNAL OF COMBINATORIAL OPTIMIZATION
Volumen: 22
Número: 4
Editorial: Springer
Fecha de publicación: 2011
Página de inicio: 517
Página final: 530
Idioma: English
DOI:

10.1007/s10878-010-9301-2

Notas: ISI - ISI