A Generalized Weil Representation for the Finite Split Orthogonal Group Oq(2n,2n), q odd >3
Keywords: split orthogonal group, Weil Representations, involutive analogues of classical groups.
Abstract
We construct via generators and relations a generalized Weil representation for the split orthogonal group O$_q(2n,2n)$ over a finite field of $q$ elements. Besides, we give an initial decomposition of the representation found. We also show that the constructed representation is equal to the restriction of the Weil representation to O$_q(2n,2n)$ for the reductive dual pair $({\rm Sp}_2(\F_q),{\rm O}_q(2n,2n))$ and that the initial decomposition is the same as the decomposition with respect to the action of Sp$_2(\F_q)$.
Más información
| Título de la Revista: | Journal of Lie Theory |
| Volumen: | 25 |
| Editorial: | Heldermann |
| Fecha de publicación: | 2015 |
| Página de inicio: | 257 |
| Página final: | 270 |
| Idioma: | English |
| Notas: | ISI |