Lovelock black holes with a nonlinear Maxwell field
Abstract
We derive electrically charged black hole solutions of the Einstein-Gauss-Bonnet equations with a nonlinear electrodynamics source in nð! 5Þ dimensions. The spacetimes are given as a warped product M^2 x K^(n 2), where K^(n 2) is a (n-2)-dimensional constant curvature space. We establish a generalized Birkhoff’s theorem by showing that it is the unique electrically charged solution with this isometry and for which the orbit of the warp factor onK^(n 2)is non-null. An extension of the analysis for full Lovelock gravity is also achieved with a particular attention to the Chern-Simons case.
Más información
Título de la Revista: | PHYSICAL REVIEW D |
Volumen: | 79 |
Número: | 4 |
Editorial: | American Physical Society |
Fecha de publicación: | 2009 |
Página de inicio: | 044012-1 |
Página final: | 044012-9 |
DOI: |
10.1103/PhysRevD.79.044012 |
Notas: | ISI |