Primal and dual stability results for variational inequalities
Abstract
The purpose of this paper is to study the continuous dependence of solutions of variational inequalities with respect to perturbations of the data that are maximal monotone operators and closed convex functions. The constraint sets are defined by a finite number of linear equalities and non linear convex inequalities. Primal and dual stability results are given, extending the classical ones for optimization problems.
Más información
Título según WOS: | Primal and dual stability results for variational inequalities |
Título según SCOPUS: | Primal and dual stability results for variational inequalities |
Título de la Revista: | COMPUTATIONAL OPTIMIZATION AND APPLICATIONS |
Volumen: | 17 |
Número: | 2-3 |
Editorial: | Springer |
Fecha de publicación: | 2000 |
Página de inicio: | 117 |
Página final: | 130 |
Idioma: | English |
URL: | http://link.springer.com/10.1023/A:1026594114013 |
DOI: |
10.1023/A:1026594114013 |
Notas: | ISI, SCOPUS |