Lattice-based biclustering using Partition Pattern Structures
Abstract
In this work we present a novel technique for exhaustive bicluster enumeration using formal concept analysis (FCA). Particularly, we use pattern structures (an extension of FCA dealing with complex data) to mine similar row/column biclusters, a specialization of biclustering when attribute values have coherent variations. We show how bi-clustering can benefit from the FCA framework through its robust theoretical description and efficient algorithms. Finally, we evaluate our bicluster mining approach w.r.t. a standard biclustering technique showing very good results in terms of bicluster quality and performance.
Más información
Título según WOS: | ID WOS:000349444700037 Not found in local WOS DB |
Título de la Revista: | ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE OF THE CATALAN ASSOCIATION FOR ARTIFICIAL INTELLIGENCE |
Volumen: | 263 |
Editorial: | IOS Press |
Fecha de publicación: | 2014 |
Página de inicio: | 213 |
Página final: | 218 |
DOI: |
10.3233/978-1-61499-419-0-213 |
Notas: | ISI |