Non-accessible critical points of Cremer polynomials
Abstract
It is shown that a polynomial with a Cremer periodic orbit has a non-accessible critical point in its Julia set provided that the Cremer periodic orbit is approximated by small cycles. Also, this paper contains a new proof of the Douady-Shishikura inequality for the number of non-repelling cycles of a complex polynomial.
Más información
| Título según WOS: | Non-accessible critical points of Cremer polynomials |
| Título según SCOPUS: | Non-accessible critical points of cremer polynomials |
| Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
| Volumen: | 20 |
| Número: | 5 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 2000 |
| Página de inicio: | 1391 |
| Página final: | 1403 |
| Idioma: | English |
| URL: | http://www.journals.cambridge.org/abstract_S0143385700000754 |
| DOI: |
10.1017/S0143385700000754 |
| Notas: | ISI, SCOPUS |