Dynamical behavior of Kauffman networks with and-or Gates

Goles, E.; Hernández G.

Abstract

We study the parallel dynamics of a class of Kauffman boolean nets such that each vertex has a binary state machine {AND, OR} as local transition function. We have called this class of nets AON. In a finite, connected and undirected graph, the transient length, attractors and its basins of attraction are completely determined in the case of only OR (AND) functions in the net. For finite, connected and undirected AON, an exact linear bound is given for the transient time using a Lyapunov functional. Also, a necessary and sufficient condition is given for the diffusion problem of spreading a one all over the net, which generalizes the primitivity notion on graphs. This condition also characterizes its architecture. For finite, strongly connected and directed AON a non-polynomial time bound is given for the transient time and for the period on planar graphs, together with an example where this transient time and period are attained. Furthermore, on infinite but finite connected, directed and non planar AON we simulate an universal two-register machine, which allows us to exhibit universal computing capabilities.

Más información

Título según WOS: Dynamical behavior of Kauffman networks with and-or Gates
Título según SCOPUS: Dynamical behavior of Kauffman networks with and-or gates
Título de la Revista: Journal of Biological Systems
Volumen: 8
Número: 2
Editorial: World Scientific Publishing Co. Pte Ltd
Fecha de publicación: 2000
Página de inicio: 151
Página final: 175
Idioma: English
URL: http://www.worldscientific.com/doi/abs/10.1142/S0218339000000109
DOI:

10.1142/S0218339000000109

Notas: ISI, SCOPUS