Bounds for sums of eigenvalues and applications
Abstract
Let A be a matrix of order n x n with real spectrum lambda(1) greater than or equal to lambda(2) greater than or equal to ... greater than or equal to lambda(n). Let 1 less than or equal to k less than or equal to n - 2. If lambda(n) or lambda(1) is known, then we find an upper bound (respectively, lower bound) for the sum of the k-largest (respectively, k-smallest) remaining eigenvalues of A. Then, we obtain a majorization vector for (lambda(1),lambda(2),...,lambda(n-1)) when lambda(n) is known and a majorization vector for (lambda(2), lambda(3), ... ,lambda(n)) when lambda(1) is known. We apply these results to the eigenvalues of the Laplacian matrix of a graph and, in particular, a sufficient condition for a graph to be connected is given. Also, we derive an upper bound for the coefficient of ergodicity of a nonnegative matrix with real spectrum. (C) 2000 Elsevier Science Ltd. All rights reserved.
Más información
| Título según WOS: | Bounds for sums of eigenvalues and applications |
| Título según SCOPUS: | Bounds for sums of eigenvalues and applications |
| Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
| Volumen: | 39 |
| Número: | 7-8 |
| Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
| Fecha de publicación: | 2000 |
| Página de inicio: | 1 |
| Página final: | 15 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0898122100000602 |
| DOI: |
10.1016/S0898-1221(00)00060-2 |
| Notas: | ISI, SCOPUS |