Observability of general linear pairs
Abstract
In this work, we deal with the observability of a general linear pair (X, pi(K)) on G which is a connected Lie group with Lie algebra g. By definition, the vector field X belongs to the normalizer of g related to the Lie algebra of all smooth vector fields on G. K is a closed Lie subgroup of G and pi(K) is the canonical projection of G onto the homogeneous space G/K. We compute the Lie algebra of the equivalence class of the identity element, and characterize local and global observability of (X, pi(k)) We extend the well-known observability rank condition of linear control systems on R-n and generalize the results appearing in [1]. (C) 1999 Elsevier Science Ltd. All rights reserved.
Más información
| Título según WOS: | Observability of general linear pairs |
| Título según SCOPUS: | Observability of general linear pairs |
| Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
| Volumen: | 39 |
| Número: | 1-2 |
| Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
| Fecha de publicación: | 2000 |
| Página de inicio: | 35 |
| Página final: | 43 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0898122199003119 |
| DOI: |
10.1016/S0898-1221(99)00311-9 |
| Notas: | ISI, SCOPUS |