Local Exact Controllability to the Trajectories of the Cahn-Hilliard Equation
Abstract
In this paper we prove the local exact controllability to the trajectories of the Cahn-Hilliard equation, which is a nonlinear fourth-order parabolic equation, by means of a control supported on an interior open interval. To prove this result we derive a Carleman estimate that allows us to conclude, thanks to a duality argument, the null controllability of the linearized equation around a given solution. Then, we apply a local inversion theorem to extend the control result to the nonlinear equation.
Más información
Título según WOS: | Local Exact Controllability to the Trajectories of the Cahn-Hilliard Equation |
Título según SCOPUS: | Local Exact Controllability to the Trajectories of the Cahn–Hilliard Equation |
Título de la Revista: | APPLIED MATHEMATICS AND OPTIMIZATION |
Volumen: | 82 |
Número: | 1 |
Editorial: | Springer |
Fecha de publicación: | 2018 |
Página de inicio: | 1 |
Página final: | 28 |
Idioma: | English |
DOI: |
10.1007/S00245-018-9500-2 |
Notas: | ISI, SCOPUS |