Nonrelativistic fermions in magnetic fields: a quantum field theory approach
Abstract
The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that is compatible with the all reasonable regularization procedures. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2 + 1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function. © 2001 Elsevier Science B.V. All rights reserved.
Más información
Título según WOS: | Nonrelativistic fermions in magnetic fields: a quantum field theory approach |
Título según SCOPUS: | Nonrelativistic fermions in magnetic fields: A quantum field theory approach |
Título de la Revista: | PHYSICS LETTERS B |
Volumen: | 520 |
Número: | 03-abr |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2001 |
Página de inicio: | 421 |
Página final: | 426 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0370269301011418 |
DOI: |
10.1016/S0370-2693(01)01141-8 |
Notas: | ISI, SCOPUS |