Regular and singular solutions of a quasilinear equation with weights

Bidaut-Veron, MF; García Huidobro M

Abstract

In this article we study the behavior near 0 of the nonnegative solutions of the equation -div(a(cursive Greek chi)|?u|p-2?u) = b(cursive Greek chi)|u|?-1u, cursive Greek chi ? ? \ {0}, where ? is a domain of ?N containing 0, and ? > p - 1 > 0, a, b are nonnegative weight functions. We give a complete classification of the solutions in the radial case, and punctual estimates in the nonradial one. We also consider the Dirichlet problem in ?.

Más información

Título según WOS: Regular and singular solutions of a quasilinear equation with weights
Título según SCOPUS: Regular and singular solutions of a quasilinear equation with weights
Título de la Revista: ASYMPTOTIC ANALYSIS
Volumen: 28
Número: 2
Editorial: IOS Press
Fecha de publicación: 2001
Página de inicio: 115
Página final: 150
Idioma: English
Notas: ISI, SCOPUS