Regular and singular solutions of a quasilinear equation with weights
Abstract
In this article we study the behavior near 0 of the nonnegative solutions of the equation -div(a(cursive Greek chi)|?u|p-2?u) = b(cursive Greek chi)|u|?-1u, cursive Greek chi ? ? \ {0}, where ? is a domain of ?N containing 0, and ? > p - 1 > 0, a, b are nonnegative weight functions. We give a complete classification of the solutions in the radial case, and punctual estimates in the nonradial one. We also consider the Dirichlet problem in ?.
Más información
Título según WOS: | Regular and singular solutions of a quasilinear equation with weights |
Título según SCOPUS: | Regular and singular solutions of a quasilinear equation with weights |
Título de la Revista: | ASYMPTOTIC ANALYSIS |
Volumen: | 28 |
Número: | 2 |
Editorial: | IOS Press |
Fecha de publicación: | 2001 |
Página de inicio: | 115 |
Página final: | 150 |
Idioma: | English |
Notas: | ISI, SCOPUS |