Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs

Buss, Enno; Han, Hiep; Schacht, Mathias

Abstract

We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which only consecutive edges intersect and these intersections consist of precisely one vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum vertex degree delta(1)(H) >= (7/16 + o(1))((n)(2)) contains a loose Hamilton cycle. This bound is asymptotically best possible. (C) 2013 Elsevier Inc. All rights reserved.

Más información

Título según WOS: ID WOS:000327561900002 Not found in local WOS DB
Título de la Revista: JOURNAL OF COMBINATORIAL THEORY SERIES B
Volumen: 103
Número: 6
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2013
Página de inicio: 658
Página final: 678
DOI:

10.1016/j.jctb.2013.07.004

Notas: ISI