Degenerate dynamical systems
Abstract
Dynamical systems, whose symplectic structure degenerates, becoming noninvertible at some points along the orbits, are analyzed. It is shown that for systems with a finite number of degrees of freedom, like in classical mechanics, the degeneracy occurs on domain walls that divide phase space into nonoverlapping regions, each one describing a nondegenerate system, causally disconnected from each other. These surfaces are characterized by the sign of the Liouville flux density on them, behaving as sources or sinks of orbits. In this latter case, once the system reaches the domain wall, it acquires a new gauge invariance and one degree of freedom is dynamically frozen, while the remaining degrees of freedom evolve regularly thereafter. © 2001 American Institute of Physics.
Más información
Título según WOS: | Degenerate dynamical systems |
Título según SCOPUS: | Degenerate dynamical systems |
Título de la Revista: | JOURNAL OF MATHEMATICAL PHYSICS |
Volumen: | 42 |
Número: | 9 |
Editorial: | AMER INST PHYSICS |
Fecha de publicación: | 2001 |
Página de inicio: | 4383 |
Página final: | 4390 |
Idioma: | English |
URL: | http://scitation.aip.org/content/aip/journal/jmp/42/9/10.1063/1.1389088 |
DOI: |
10.1063/1.1389088 |
Notas: | ISI, SCOPUS |