Degenerate dynamical systems

Saavedra J.; Troncoso R.; Zanelli, J

Abstract

Dynamical systems, whose symplectic structure degenerates, becoming noninvertible at some points along the orbits, are analyzed. It is shown that for systems with a finite number of degrees of freedom, like in classical mechanics, the degeneracy occurs on domain walls that divide phase space into nonoverlapping regions, each one describing a nondegenerate system, causally disconnected from each other. These surfaces are characterized by the sign of the Liouville flux density on them, behaving as sources or sinks of orbits. In this latter case, once the system reaches the domain wall, it acquires a new gauge invariance and one degree of freedom is dynamically frozen, while the remaining degrees of freedom evolve regularly thereafter. © 2001 American Institute of Physics.

Más información

Título según WOS: Degenerate dynamical systems
Título según SCOPUS: Degenerate dynamical systems
Título de la Revista: JOURNAL OF MATHEMATICAL PHYSICS
Volumen: 42
Número: 9
Editorial: AMER INST PHYSICS
Fecha de publicación: 2001
Página de inicio: 4383
Página final: 4390
Idioma: English
URL: http://scitation.aip.org/content/aip/journal/jmp/42/9/10.1063/1.1389088
DOI:

10.1063/1.1389088

Notas: ISI, SCOPUS