Quasi-reversible instabilities of closed orbits
Abstract
We characterize the three generic quasi-reversible instabilities of closed orbits: the quasi-reversible saddle-node, the Krein collision and the period doubling bifurcation. We show that after a periodic change of variables the asymptotic normal forms of the last two instabilities are the Maxwell-Bloch and the Lorenz equations. We exhibit a simple example of the quasi-reversible period doubling bifurcation, the quasi-reversible 2:1 resonance. © 2001 Elsevier Science B.V.
Más información
| Título según WOS: | Quasi-reversible instabilities of closed orbits |
| Título según SCOPUS: | Quasi-reversible instabilities of closed orbits |
| Título de la Revista: | PHYSICS LETTERS A |
| Volumen: | 287 |
| Número: | 03-abr |
| Editorial: | Elsevier |
| Fecha de publicación: | 2001 |
| Página de inicio: | 198 |
| Página final: | 204 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S037596010100490X |
| DOI: |
10.1016/S0375-9601(01)00490-X |
| Notas: | ISI, SCOPUS |