Climatic Controls on Fluvial Cut-and-Fill Cycles in Drainages with In-stream Wetlands in the Central Andes
Abstract
Fluvial systems that possess in-stream wetlands, or marshes, are common in arid environments where water-tables are emergent and large discharge events uncommon. These streambeds are protected from erosion by a dense cover of hydrophyllic and phreatophytic vegetation. Along the Pacific slope of the Central Andes in northern Chile (~20°-26°S), which includes some of the driest sectors of the Atacama Desert, in-stream wetlands occur in deeply incised bedrock canyons on the Andean slope and piedmont. Over the last several years we have compiled a detailed record of late Pleistocene and Holocene vegetation changes along the Pacific slope of the Andes through the collection, analysis, and radiocarbon determination of over 180 rodent middens. Rodent middens record past changes in precipitation levels by tracking the downslope migrations of plant species into the hyperarid desert. We have also assembled a record of the cut-and-fill cycles of several fluvial systems with in-stream wetlands located at various distances (5-50 km) from the zone of ground-water recharge in the High Andes through stratigraphic mapping and the radiocarbon dating of over 100 samples of organic material within these wetlands. Combined, this well-dated record of hillslope vegetation and stream aggradation and incision allows us to assess the influence of climatic change on stream processes, including the nature of stream response, the sensitivity of different stream systems to climatic change, and the response times of streams to climate changes that vary in distance from ground-water recharge zones. The combined data set shows that in-stream wetland aggradation is directly linked to changes in climate, with aggradation occurring during wetter climatic periods when water tables are high. Incision occurs during dry climatic periods when water tables are lower and streambed sediments are no longer anchored by dense vegetation. Streams that are closer to ground-water recharge zones are more sensitive to minor changes in precipitation, whereas more distant streams with larger catchment areas appear to be less sensitive. Response times of stream incision to the initiation of drought conditions appear to be ~500 years.
Más información
Fecha de publicación: | 2004 |
Año de Inicio/Término: | 13-17 December |
Idioma: | English |
URL: | http://abstractsearch.agu.org/meetings/2004/FM/sections/PP |