MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms
Abstract
We examine the model-building issue related to multi-objective estimation of distribution algorithms (MOEDAs) and show that some of their, as yet overlooked, characteristics render most current MOEDAs unviable when addressing optimization problems with many objectives. We propose a novel model-building growing neural gas (MB-GNG) network that is specially devised for properly dealing with that issue and therefore yields a better performance. Experiments are conducted in order to show from an empirical point of view the advantages of the new algorithm. (c) 2011 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | ID WOS:000290079000014 Not found in local WOS DB |
Título de la Revista: | OPERATIONS RESEARCH LETTERS |
Volumen: | 39 |
Número: | 2 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2011 |
Página de inicio: | 150 |
Página final: | 154 |
DOI: |
10.1016/j.orl.2011.01.002 |
Notas: | ISI |