MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms
Abstract
We examine the model-building issue related to multi-objective estimation of distribution algorithms (MOEDAs) and show that some of their, as yet overlooked, characteristics render most current MOEDAs unviable when addressing optimization problems with many objectives. We propose a novel model-building growing neural gas (MB-GNG) network that is specially devised for properly dealing with that issue and therefore yields a better performance. Experiments are conducted in order to show from an empirical point of view the advantages of the new algorithm. (c) 2011 Elsevier B.V. All rights reserved.
Más información
| Título según WOS: | ID WOS:000290079000014 Not found in local WOS DB |
| Título de la Revista: | OPERATIONS RESEARCH LETTERS |
| Volumen: | 39 |
| Número: | 2 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2011 |
| Página de inicio: | 150 |
| Página final: | 154 |
| DOI: |
10.1016/j.orl.2011.01.002 |
| Notas: | ISI |