MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms

Marti, Luis; Garcia, Jesus; Berlanga, Antonio; Coello Coello, Carlos A.; Molina, Jose M.

Abstract

We examine the model-building issue related to multi-objective estimation of distribution algorithms (MOEDAs) and show that some of their, as yet overlooked, characteristics render most current MOEDAs unviable when addressing optimization problems with many objectives. We propose a novel model-building growing neural gas (MB-GNG) network that is specially devised for properly dealing with that issue and therefore yields a better performance. Experiments are conducted in order to show from an empirical point of view the advantages of the new algorithm. (c) 2011 Elsevier B.V. All rights reserved.

Más información

Título según WOS: ID WOS:000290079000014 Not found in local WOS DB
Título de la Revista: OPERATIONS RESEARCH LETTERS
Volumen: 39
Número: 2
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2011
Página de inicio: 150
Página final: 154
DOI:

10.1016/j.orl.2011.01.002

Notas: ISI