Anomaly Detection with the Voronoi Diagram Evolutionary Algorithm
Abstract
This paper presents the Voronoi diagram-based evolutionary algorithm (VorE Lambda l). VorE Lambda l partitions input space in abnormal/normal subsets using Voronoi diagrams. Diagrams are evolved using a multiobjective bio-inspired approach in order to conjointly optimize classification metrics while also being able to represent areas of the data space that are not present in the training dataset. As part of the paper VorEAl is experimentally validated and contrasted with similar approaches.
Más información
Título según WOS: | ID WOS:000387962100065 Not found in local WOS DB |
Título de la Revista: | BIO-INSPIRED SYSTEMS AND APPLICATIONS: FROM ROBOTICS TO AMBIENT INTELLIGENCE, PT II |
Volumen: | 9921 |
Editorial: | SPRINGER INTERNATIONAL PUBLISHING AG |
Fecha de publicación: | 2016 |
Página de inicio: | 697 |
Página final: | 706 |
DOI: |
10.1007/978-3-319-45823-6_65 |
Notas: | ISI |