A new identification method for use in nonlinear prediction

Montoya, F; Cipriano A.; Ramos M.

Abstract

This paper presents a new identification method for fuzzy models used in nonlinear prediction. The structure and parameters of the fuzzy model are obtained, using input-output data, by minimization of the prediction error. The predictive capacity of the fuzzy model is compared with other linear and non-linear models analyzing an illustrative example. The results show that the new method presents a better behavior.

Más información

Título según WOS: A new identification method for use in nonlinear prediction
Título según SCOPUS: A new identification method for use in nonlinear prediction
Título de la Revista: JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
Volumen: 10
Número: 03-abr
Editorial: IOS Press
Fecha de publicación: 2001
Página de inicio: 131
Página final: 137
Idioma: English
Notas: ISI, SCOPUS