Algebraic decay in hierarchical graphs

Barra, F; Gilbert, T

Abstract

We study the algebraic decay of the survival probability in open hierarchical graphs. We present a model of a persistent random walk on a hierarchical graph and study the spectral properties of the Frobenius-Perron operator. Using a perturbative scheme, we derive the exponent of the classical algebraic decay in terms of two parameters of the model. One parameter defines the geometrical relation between the length scales on the graph, and the other relates to the probabilities for the random walker to go from one level of the hierarchy to another. The scattering resonances of the corresponding hierarchical quantum graphs are also studied. The width distribution shows the scaling behavior P(?) ? 1/?.

Más información

Título según WOS: Algebraic decay in hierarchical graphs
Título según SCOPUS: Algebraic decay in hierarchical graphs
Título de la Revista: JOURNAL OF STATISTICAL PHYSICS
Volumen: 109
Número: 03-abr
Editorial: Springer
Fecha de publicación: 2002
Página de inicio: 777
Página final: 801
Idioma: English
URL: http://link.springer.com/10.1023/A:1020427018179
DOI:

10.1023/A:1020427018179

Notas: ISI, SCOPUS