An elementary construction of complex patterns in nonlinear Schrodinger equations
Abstract
We consider the problem of finding standing waves to a nonlinear Schrödinger equation. This leads to searching for solutions of the equation -?2u? + V(x)u = |u|p-1u in R, p > 1, when s is a small parameter. Given any finite set of points x1 < X2 < ? < xm constituted by isolated local maxima or minima of V, and corresponding arbitrary integers n i, i = 1,..., m, we prove that there is a finite energy solution exhibiting a cluster of n/ spikes concentrating around each xi as ? ? 0. The clusters consist of spikes with alternating sign if the point is a minimum, and of constant sign if it is a maximum. This construction extends to infinitely many clusters of spikes under appropriate conditions. The proof follows an elementary variational matching approach, which resembles the so-called broken-geodesic method.
Más información
Título según WOS: | An elementary construction of complex patterns in nonlinear Schrodinger equations |
Título según SCOPUS: | An elementary construction of complex patterns in nonlinear schrödinger equations |
Título de la Revista: | NONLINEARITY |
Volumen: | 15 |
Número: | 5 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2002 |
Página de inicio: | 1653 |
Página final: | 1671 |
Idioma: | English |
Notas: | ISI, SCOPUS |